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Abstract
Carbon dioxide gas is one of the factors and contributors to climate change. However it also can be used to make
renewable energy by using CO2 Capture and Storage. In this study, we required a renewable metal framework
composite thats where biological metal organic framework (bio-MOF) is required. Citric acid also plays a crucial
role in this study, citric acid is very practical because it’s obtained very easily and it’s non-toxic. This study involved
prediction and optimization by using the combination of Artificial Neural Network (ANN) and Design expert. The
two inputs are temperature and pressures, while the outcome are CO2 uptakes and heat adsorption. In addition to
this the multiobjective genetic algorithm (MOGA) approach is also used to maximize optimization for CO2 uptakes
and heat adsorption. The CO2 uptakes and heat adsorption coincide satisfactory with the values predicted by ANN
with high validity of R=0.99. In this research, we look at how bio-MOFs may be used to extract CO2 and review the
principles of CO2 adsorption and industrial system requirements. We also examine both experimental and
theoretical studies of the structural factors of bio-MOFs that impact CO2 adsorption efficiency, heat of adsorption,
and selectivity.
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1. Introduction

The impact of climate change is one of the most
complicated and significant challenges facing today’s
society. Over the next 40 years, the global population
will grow from 7 to 9 billion. Fossil fuels, coal gas
and oil supply 80% of the world’s energy needs. As a
result, releasing enormous quantities of CO2, which is
the principal driver of global warming. Today's
atmospheric CO2 concentration reaches 410 ppm. It
is likely to rise further and surpass 550 ppm by 2050.
A solution to this is to have greater energy efficiency,
use renewable energy and CO2 Capture and Storage
(CCS). CCS is one sustainable energy technology that
has emerged as a viable answer to alleviate climate
change and global warming on time.

Renewable energy is common and accessible but it is
hard to implement therefore, another alternative to
reducing climate change is carbon capture and
storage (CCS). “Carbon capture and storage is going
to be the only effective way we have in the short term
to prevent carbon emissions from the steel industry,
cement manufacture and many other processes”, says
Professor Stuart of Edinburgh University.

CCS includes the process of absorption, adsorption,
cryogenic, and membrane separation. The most
advanced CO2 capture technique is absorption, which
uses liquid amine scrubbing to separate CO2 ,H2 and
CH4 to improve natural gas quality. The most used
amine solutions are Methyldiethanolamine (MDEA),
Diethanolamine (DEA), Aminoethoxy Ethanol, and
Diisopropanolamine (DIPA). However, amine
scrubbing produces waste disposal with volatile
degradation compounds which have been studied to
potentially harm human health and the environment.
Moreover, it also requires high energy for
regeneration, and is vulnerable to material corrosion.
It also degrades amines to toxic chemicals such as
ammonia. As a result, researchers are concentrating
on the development of adsorption technology that
promises the possibility for effective CO2 removal
from high dilution in the flue gas while also using
little energy for regeneration. Adsorption process is
the process in which the one or more component of a
gas or liquid stream is adsorbed on the surface of a
solid adsorbent and a separation is accomplished.
Because CO2 adsorption is an effective separation
technique that needs low energy and financial
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commitment, porous adsorbents may be the solution
to these challenges. Global zeolites, activated carbon,
and silica gel, metal organic frameworks (MOFs) are
examples of porous materials used for CCS.

For this research, we will be using MOFs as our
porous material. Because of their hybrid origin,
MOFs have a unique chemical structure which
consist of metal centers and organic ligands. Unlike
amines, MOFs are more thermally stable at
temperatures as high as 200°C, have lower energy
requirements and enhanced stability. MOFs feature a
number of distinguishing qualities and therefore have
developed as next-generation adsorbent materials.
They are appealing as gas storage materials due to
their extremely large surface areas, high porosity,
readily regulated pore diameters, outstanding thermal
and chemical stability, quick kinetics, and moisture
resistance. Bio-MOF , specifically, would be the type
of MOF we will use. The demand for ecologically
friendly and cost-effective technologies to counteract
extreme climate change has accelerated the
development of renewable and porous materials
based on green chemistry concepts such as
renewability and recyclability. Biological MOFs, also
known as bio-MOFs, are made up of physiologically
and ecologically suitable metal ions and biomolecular
ligands therefore would be the best choice for our
porous material.

In this research, citric acid ，C₆H₈O₇，was chosen to
be our reagent as it is cost effective, obtained easily
and non-toxic. Citric acid is a type of ligand that
contains basicity and composed of COOH (carboxylic
acid ) which can absorbs CO2 better compared to
other reagents. The presence of citric acid in the
synthesis system can improve hydrogen bonding
between the triblock copolymer and resol, resulting in
more micropores in the final carbon material, which
is beneficial for CO2 adsorption. Our objectives for
this research are to investigate the CO2 uptakes , to
analyze the energy needed between bio-MOF and
citric acid, and to design automatic adsorption carbon
capture. Then, we will find the optimization
parameters in the adsorption process which is the
temperature and the pressure operation in the flue gas
as the result of the combustion process. Furthermore,
we will be using a method called artificial
intelligence with multiobjective genetic algorithm
optimization. We hope that this research will pave
the way for researchers and practitioners to be able to
estimate the high CO2 uptakes with the concept of a
sustainable low-cost of CO2 capture technology.

2. Methodology
This study is divided into three sections. The first
section of the study focuses on the analysis of
bio-MOFs for CO2 adsorption. Furthermore, in the
second phase of the research, the researchers
investigated the predictions of CO2 uptake, heat of
adsorption, and CO2/N2 selectivity using neural
network modeling, and then continued with artificial
neural network optimization using a multiobjective
genetic algorithm approach.

2.1 Materials
Merck supplied Chromium Nitrate nonahydrate
(CrH12N3O7) as the metal and citric acid monohydrate
(C6H8O7) as the ligand. Merck also provided
potassium hydroxide (KOH) , ethanol (99.7%) and N,
N dimethylformamide (DMF, 99.5%) for the

purification of Bio-MOF, which were utilized exactly
as received. These products are known to be more
environmentally friendly than NaOH in adjusting the
pH level of the MOF solution.

2.2 Bio-MOF Synthesis
This synthesis was carried out using a hydrothermal
reaction procedure using the following material
mixture: Chromium Nitrate (2.5 g), Citric Acid (2.1
g), Potassium Hydroxide (1.7 g), Ethanol (2.5 mL),
and deionized water/Aquabidest (2.5 mL), as shown
in Figure 1. These components were combined and
placed into the stainless steel autoclave's reactor. The
autoclave was gradually heated in the oven from
room temperature to 120 degree celsius in 30
minutes. After reaching 1200 degrees Celsius, the
temperature was kept constant for 48 hours.
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Figure 1 Hydrothermal reaction on Bio-MOF

2.3 RSM Predictive Model
In order to figure out the natural relationship amongst
the unalike parameters in the experiment from the
dependence and interaction between them that were
shown through the outcomes of the experiments,
Design of Experiment (DoE) is used. Face-centered
central complex design with six center points and
eight-corner points was used in the DoE analysis
intending to enhance the end results. Using the inputs
and responses, DoE end results were obtained and a
verifiable connection was expanded. In order to
obtain the result, DoE end results are then statistically
inspected using Response Surface Method (RSM).

RSM is a reliable analysis method for examining
multiple inputs and outputs for modeling and
optimization. Moreover, it is also a robust analysis
technique to survey several inputs and responses for
modeling and optimization. The least well known
components are used in the RSM analysis, which
leads to a more reliable discovery. The input
parameters, response, and interaction in the first stage
were displayed in a linear equation that was then used
in the optimization process of the parameters in the
next stage. With RSM, a verifiable linear equation
relationship between the input parameters and their
responses was improved. The analysis of variance
(ANOVA) measures the average squared, sum of
squared deviations, and degree of freedom of the
model for every single input value. ANOVA was
made use of afterwards for optimization through the
application of the input parameters and significance
of the model to ANOVA on linear equations.

2.4 ANN Based Predictive Model
Artificial Neural Network, ANN, effective
data-driven modeling tools that are frequently
employed for the dynamic modeling and
identification of nonlinear systems. This is because of
their capacity for universal approximation and
flexible structure, which enables them to capture
complicated nonlinear behaviors. They are made up
of tiny intelligent computing units called neurons that
are utilized to represent complex nonlinear systems in
accordance with the groupings of input-output data
that are readily available. Finding the correlations
between the experiment’s variables is difficult as
there are many conditions that must be met, as well as
problematic calculations that consume lots of time.
The ability of an artificial neural network to produce
specific equations from the data given into it makes it
practical for pinning down these links. Artificial
neural networks are practical because they reduce
costs, time, and work.

In this research study, a multilayer perceptron (MLP)
is utilized, meaning it connects the networks in a
feed-forward configuration to create the ideal
network. MLP is frequently considered as the most
effective method for solving nonlinear issues. Rather
than multiple layers of neurons, the MLP framework
embodies optimized neurons and 3 interconnected
layers: input layer, hidden layer, and output layer. The
hidden layer is attached to every input layer,
consisting of multiple transfer functions related to
biological neurons. Last but not least, the output layer
presents the projection of the advanced model.



The number of neurons is very noteworthy to find the
optimal network size and is often chosen based on
trial and error method or a heuristic approach.
Deciding and selecting the optimal quantity of
neurons is a critical step as a high number of neurons
might cause overfitting, in reverse, a lower number of
neurons might cause the results to underfit. As stated
earlier, to avoid overfitting due to MLP, the input data
went through multiple several essential processes:
training, validation, and testing. Through synapse
adjustments, the training of neurons helps design a
prime ANN model, while validation helps oversee the
learning curve of neurons. Both processes can only be
stopped when the universal Mean Square Error
(MSE) in the training stage is higher than the ones
during the validation stage. The amount of neurons
used are 70% of the data sets. The other 15% of each
data set were employed in the validation and testing
process. When data is officially validated, the evolved
model is used to trigger experimental data at
numerous input conditions.

2.5 Genetic Algorithm (GA)
Genetic algorithm was first initiated by John Holland
and David Goldberg and its concept has been very
present in lots of different areas, showing that it has
been properly and nicely designed. In short, genetic
algorithms are a group of alike algorithms that draw
upon the ideas of Darwinian genetics and evolution.
As time flies, genetic algorithm constantly provide
satisfactory results.

GA is unique than any other types of algorithms as it
has numerous solutions, rather than a one, single
‘current’ solution. Multiple stages in the optimization
process by multi-objective genetic algorithm is
represented in Figure 2.

In order to carry out GA, it is essential to make a
number of decisions about how to represent solutions,
how to manipulate information and how the
population is taken good care of: GA randomly
chooses the populations and applies the fitness
function. Those individuals with sufficient match
values will be chosen to enter the crossover stage,
while individuals with low match values will be
eliminated. Moreover, individuals who have been
selected to the crossover stage will be paired to
assemble new individuals who have a combination of
information from their parents. Then, the individuals
will undergo random mutations and show up as a new
population, including their parents. Up until the best
result is obtained, this cycle will repeat itself. The
optimization process is carried out in MATLAB’s
optimization toolbox, along with the neural function
established during the set up of the artificial neural
networks as the fitness function. The constraints of
each variable are determined. The optimization
parameters are then set until the optimization function
is ready to run.

2.6 Multi-objective Optimization
This research uses ANN to understand more deeply
about this research’s multi-objective optimization. We
have gathered several sets of data in advance before
conducting this research.

Using MATLAB ANN, we enter the data that we had
collected and the software will release prediction
results that will then be optimized by genetic
algorithm (GA). The optimized results will be
considered on whether it has been obtained or not.
Nevertheless, if the result isn’t optimum, the decision
variable’s beginning value is once again set, repeated
over and over until the appropriate outcome is
achieved. The following equations can be used to
design a multiobjective optimization:
Find 𝑥 = 𝑥

𝑖( )∀𝑖 = 1, 2, …,  𝑁
𝑝𝑎𝑟

(1)

Minimizing or maximizing
𝑓

𝑖
𝑥( )∀𝑖 = 1, 2, …,  𝑁

𝑜𝑏𝑗

(2)

𝑔
𝑗

𝑥( ) = 0     ∀𝑗1, 2, …,  𝑚 (3)

ℎ
𝑘

𝑥( ) = 0     ∀𝑘1, 2, …,  𝑛 (4)

Npar is the number of decision variables, fi(x) is the
objective function, and Nobj is the total number of
objective functions where x is the vector of choice
variables. gj(x) and hk(x), respectively, stand for the
fairness and unfairness conditions. The quantity of
fairness and unfairness constraints, respectively, is
represented by m and n.

3. Results & Discussion

3.1 Result of synthesis Bio-MOF citric acid
The Bio-MOF Citric Acid was fabricated by
hydrothermal reaction using the eco-friendly solvents
Aquabidest and potassium hydroxide (KOH) used to
balance the pH of the solution. After stirring each
separate mixture, the two solutions are reacted again
by stirring, then placed in an autoclave. It is then
heated in the oven at 120 degrees celsius for 48
hours, and the BIO-MOF Citric Acid is produced.
After heating, the BIO-MOF Citric Acid product has
to be cleaned and purified. The purification is done in
order to remove any unreacted substances that might
be sticking onto the surface of the end product. The
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purification is done by washing the crystals formed in
an organic solution, and then rinsing the product with
ethanol. This purification process has been proven to
be better for crystallinity of the BIO-MOF.

3.2 Automatic Adsorption Carbon Capture
(Element Peltier)
The device that the BIO-MOF is implemented into is
called the Automatic Adsorption Carbon Capture
Device. It consists of 3 parts: the compressor,
Automatic Adsorption Carbon Capture Vessel, and
the gas tanks, which can be seen in Figure 2.

The use of the compressor is to facilitate the
procedure of gathering CO2 from around the device.
Because of the compressor, air from around the
device is being absorbed easily, particularly the CO2,
therefore making the process more effective. After
the CO2 has been adsorbed, there are element peltiers
in the device that are actively regulating the internal
temperature of the device. It regulates the internal

temperature to be colder when the CO2 is being
adsorbed using the compressor, therefore making the
CO2 liquid and facilitating it to be reacted with
BIO-MOF Citric Acid. It regulates the internal
temperature to be hotter when it is about to be
transported into the gas tanks, the liquid phase of
CO2 is then heated back into the gas tanks as CO2
gas. The process of transporting CO2 gas into the gas
tanks is helped with the use of vacuum pumps. As
shown in the figure So first, the vessel is being placed
in a (preferably) outdoor position where there is an
abundant amount of CO2. Second, the compressor
(on the right) helps the vessel absorb the CO2 from
around it. Next, the element peltiers (the blue
devices) on the vessel regulate the internal
temperature to be cooler in order to liquify the CO2
and facilitate it to react with the BIO-MOF Citric
Acid. After reaction, the CO2 is then heated up by the
peltiers to convert it back into gaseous form,
facilitating the vacuum pump to adsorb the CO2 into
the gas tubes.

Figure 2 Automatic Adsorption Carbon Capture Device

3.3 Design Expert, Model Development, and
Verification
Design of Experiment (DoE) was used to figure out
the relationship among the different parameters in the
experiment from the dependence and interaction
between them, which were shown through the
outcomes of the experiments. Face-centered central
complex design with six center points and
eight-corner points was made use of in the DoE
analysis intending to improve the outcomes. Using
the inputs and responses, DoE outcomes were gained
and a verifiable connection was developed. In order
to obtain the result, DoE outcomes are then
statistically examined using Response Surface
Method (RSM).

The variations of desirability and uptake were
observed by changing the values of pressure and

temperature. Table 1 shows the fit summary of heat
adsorption analysis response by using Design Expert.
Based on Table 2, it displays the fit statistics of the
final results of standard deviation, mean, and
curriculum vitae, respectively. The ANOVA results of
Heat Adsorption are seen from Table 3. The findings
show how the inputs along with their squares and
interactions, helps in analyzing and executing the
output. In addition, it also demonstrates how these
features are critical for assessing the generated model.
Table 3 shows that for Heat Adsorption with a
P-value of <0.05, the corresponding F-value for the
constructed model is 489.39. Model terms with
P-values less than 0.0001 are notable, consequently
these are appropriate model terms in this scenario.
The results from Table 3 demonstrate the value of the
developed model in optimizing and estimating Heat
Adsorption. Eq (1) is the model's representation. The
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equation involves the various parameters that affect
Heat Adsorption.
Heat Adsorption Formula = -2409.27 + 15.66*A +
0.119384*B + -0.000332085*AB + -0.0244653*A^2
+ -4.98065e-07*B^2 (1)

The fit summary of heat adsorption analysis response
by using Design Expert is demonstrated in Table 4.
Based on Table 5, it displays the fit statistics of the
final results of standard deviation, mean, and
curriculum vitae, respectively. Table 6 shows the

ANOVA results to estimate the uptakes with an
F-value of 2154.14 and P-value of <0.05. All the
p-values present are 0.0001 which is closer to 0,
making the model more remarkable. Eq (2) is a
representation of a developed model for uptakes
estimation.
Uptakes Formula = -15.3589 + 0.0950494*A +
0.00084637*+-2.44752e-06*AB+ -0.000146769*A^2
+ -1.51836e-09*B^2 (2)

Using normal plots for residuals, the suggested model
was tested for acceptability and irregularity of data. A

good model should not follow neither trend nor
sequence and the points should be near to a straight
line. Figure 3 portrays the residual plots for the Heat
Adsorption. In the report of Figure 3, all data points
SOMETHING SOMETHING. Figure 4 shows the
residual plot for uptakes response. Data points that
exceed the allowed range of ±3.67 are considered
abnormal. According to Figure 3b all data points fall
inside this permitted range. Anything outside this
range would also be considered abnormal.

Based on Figure 5, there are four different
parametric studies in which one of them is the
optimum temperature for the variable A, B for
pressure, and the rest for minimum Heat Adsorption
and maximum Uptakes. The main goal of this
research is to maximize the value obtained in uptakes
with the minimum heat adsorption. The most suitable
temperature is 312.635 and pressure is at 2100.104.
Bio-MOF Citric Acid Chromium Optimization would
work best at 0.175 as its maximum uptakes and
125.821 as its minimum heat adsorption with a
desirability of 0.405.



Std. Dev. 0.0125 R² 0.9828

Mean 0.2000 Adjusted R² 0.9823

C.V. (%) 6.26 Predicted R² 0.9815

Adeq Precision 163.3985

Table 5 Fit Statistics of DoE Analysis Response of Uptakes

Figure 3 Normal Plot of Head Adsorption Response Figure 4 Normal Plot of Uptakes Response

← Figure 5 Ramp Function of RSM Optimization



3.4 Artificial neural network modeling
In this study, the ANN modeling used consisted of 2
inputs, 1 hidden layer and 10 hidden neurons, and 2
target outputs. The trial-and-error method was used to
find the optimal design, and the architecture with the
lowest error (RMSE) and best regression coefficient
was chosen. Figure 6 depicts the architecture of the
artificial neural network that was designed. The
discrepancy between the neural networks’s output and
the desired data is known as the network error level.
By computing the weights to achieve the best weight
to employ in the testing phase, the backpropagation
algorithm enables neurons to learn new information.
To reduce mistakes that may arise during learning, the
weights are changed repeatedly. This reverse
computing technique can significantly lower the
value of the mistake.

Figure 6 Architecture of ANN modeling

Root mean square error (RMSE), mean absolute error
(MAE), and mean bias error (MBE) were used to
determine the error for each neuron and each data
category. The closer the regression of coefficient (R)
to 1 is, the more accurate the trendline as the R-value
is 0.99. It also shows that it is touching every dot on
the graph. The regression coefficient (R) values for
the trendlines in the data are R = 0.99 for the training
data, R = 0.99 For the validation data, and R = 0.99
for the testing data and R = 0.99 for all data
combined, as illustrated in Figure 7a. The ANN
regression shows several correlation coefficients and
comparisons between regression model and ANN
during training validation, and testing. Figure 7b
illustrates the error histogram, training performance,
and training state, respectively. The error histogram is
a histogram of the differences between the target and
predicted values after the feedforward neural network
has been trained. These error numbers show how the
expected and goal values differ. The performance
graph depicts the network’s best validation
performance. The variation in the gradient coefficient
with respect to the number of epochs is the training
state.

(a) (b)
Figure 7 (a) ANN regression data (b) error histogram of network



3.5 MOGA Optimization
3.5.1 DoE MOGA Optimization
DoE MOGA analysis was polished using MATLAB
software, obtaining Pareto graphs. The optimization
process was implemented using the equation that has
originated from DoE, respectively Eq, (8)-(10). These
objective values are maximized to get desired carbon
adsorption towards bio-mof citric acid chromium.
The input range values of pressure and temperature
were determined based on the previous experimental
data. The results of the optimization with the DoE
equation can be seen in Figure 8. The Pareto graph
obtained here shows that the Co2 uptake and heat
adsorption maximum values reached to 26% and 24%

Figure 8 DoE MOGA Optimization

with the minimum optimal values for are 3% and 4%
respectively. The optimum value generated by
MOGA is still in the same range as the optimization
with DoE as described in Table 7.

Table 7 Optimal Results of DoE MOGA
Optimization

3.5.2 ANN MOGA Optimization
The developed network function is found to be
accurate in predicting the percentage of CO2 uptakes
and heat adsorption. This function that is created by
the ANN procedure is then employed as a fitness
function in the optimization phase. Following the
selection of the population and the optimization
operations, a Pareto graph is formed as shown in

Figure 9, The Pareto frontier is achieved by solving
the optimization model with the LM method Figure
9. Optimum point of optimization. From the
optimization result with the prediction equation by
ANN the optimal values for CO2 and heat adsorption
were maximum at 35.25% and 33.8% and the

Figure 9 ANN MOGA Optimization
minimum is at 23% respectively for both of them.

4. Conclusion
Over the last two decades, the development of porous
MOFs for CO2 capture and storage (CCS) has
accelerated. MOFs have exceptional features such as
high surface areas, thermal stability, chemical
stability, and easily adjustable and diverse
architectures. The chemical characteristics of the
adsorbent do not always determine the viability of
capturing CO2 in industrial flue gas. Cost,
environmental compatibility, safety, parasitic energy
loss, heat management, thermodynamic efficiency,
humidity stability, robustness, recyclability, and
kinetics all have a significant impact on CO2 capture
effectiveness. We examined adsorption and built
adsorption systems in this review. The first stage in
improving CO2 collection is the creation of
adsorbents that significantly improve adsorption
system performance.

The requirement for porous and recyclable MOFs for
CO2 collection and environmental concerns has
fueled the development of biomolecular ligand-based
MOFs (bioligands). Multiple guest binding, chirality,
self-assembling capabilities, and flexible or robust
frameworks are among the qualities of the bioligands
used to form bio-MOFs that make them excellent for
CO2 collection. Several modes of bio ligand binding
have been investigated. Because of the availability of
amino acids, peptides, nucleobases, saccharides,
porphyrins, and proteins in nature, a wide range of
bio-MOF structures have been developed. Lewis



bases are found in carboxyl-, nitrogen-, and
metal-bearing ligands, which can improve CO2
adsorption.

Bio-MOFs have a high capacity for CO2 adsorption
applications. Only under post combustion CO2
capture settings at ambient pressure and temperature
has the great selectivity of bio-MOFs been tested.
Bio-MOFs have not been thoroughly investigated in
precombustion conditions, which include high
pressures and temperatures.
More research on the effectiveness of bio-MOFs for
pre combustion CO2 capture is thus required. The
influence of adsorption heat on adsorption capacity
and selectivity, as well as structural optimization of
bio-MOFs, have not been thoroughly investigated.

The enthalpy values of existing bio-MOFs with
excellent adsorption capabilities and selectivity are
high. Heat and energy management in industrial CO2
adsorption systems will be affected.

More research on the use of bio-MOFs for CO2
capture is required, particularly on the impact of
chemisorption on adsorbent characteristics and
system parameters that affect energy consumption,
cost, and thermodynamic efficiency. We believe that
many future studies will concentrate on optimizing
bio-MOF adsorption in terms of both energy usage
and adsorption efficiency cost. Dynamic tests at
various CO2 concentrations should be carried out in
order to produce an optimal CO2 adsorption system
suited for industrial use.
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